Journal of Organometallic Chemistry, 116 (1976) 319–322 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ORGANOSCANDIUM COMPOUNDS CONTAINING THE $\eta^{\rm 8}\text{-}C_{\rm 8}\mathrm{H}_{\rm 8}$ LIGAND

A. WESTERHOF and H.J. DE LIEFDE MEIJER *

Laboratorium voor Anorganische Chemie, Rijksuniversiteit, Zernikelaan, Groningen (The Netherlands)

(Received March 9th, 1976)

Summary

The compound $C_8H_8ScCl \cdot THF$ has been prepared by reaction of $ScCl_3 \cdot 3THF$ with $K_2C_8H_8$. Reaction of $C_8H_8ScCl \cdot THF$ with C_5H_5Na and $K_2C_8H_8$ yields $C_8H_8ScC_5H_5$ and $KSc(C_8H_8)_2$, respectively. Spectral evidence is given for the sandwich structure of the latter compounds.

Introduction

Since the preparation of $(C_5H_5)_3$ Sc in 1956 by Wilkinson and Birmingham [1] few papers on organoscandium chemistry have appeared. Hart et al. [2] reported the synthesis of R_3 Sc (R = phenyl, phenylethynyl), while Coutts and Wailes [3] prepared $(C_5H_5)_2$ ScCl, which was used for the preparation of $(C_5H_5)_2$ -ScR (R = π -allyl, acetate). In this paper the syntheses of the first organoscandium compounds containing the η^8 -C₈H₈ ligand viz. C₈H₈ScCl · THF, C₈H₈ScC₅H₅, and KSc(C₈H₈)₂ are described.

Experimental

General

All reactions were carried out under dry nitrogen. Tetrahydrofuran (THF) was distilled over $LiAlH_4$ before use. Other solvents were dried over sodium wire. Elemental analyses were carried out at the Analytical Department of this University; scandium analyses were performed by the method of Yamada et al. [4].

Starting materials

 $K_2C_8H_8$ and $C_5H_5N_8$ were prepared in the usual way from C_8H_8 and K, and C_5H_6 and Na.

 $ScCl_3 \cdot 3THF$ was prepared from $ScCl_3 \cdot 6H_2O$ and predistilled thionyl chloride. $ScCl_3 \cdot 6H_2O$ was added in portions to a mixture of THF and $SOCl_2$ at room temperature. A violent exothermic reaction occurred and HCl and SO_2 were evolved. After the addition was complete, the mixture was kept at reflux temperature for about 6 h. The excess of THF and $SOCl_2$ was pumped off and the residue washed with diethyl ether. After drying, pure $ScCl_3 \cdot 3THF$ was obtained in 96% yield. (Found: Sc, 12.23. $C_{12}H_{24}Cl_3O_3Sc$ calcd.: Sc, 12.20%.)

$C_8H_8ScCl \cdot THF$

To a stirred suspension of $ScCl_3 \cdot 3THF$ (3.67 g, 10 mmol) in THF (100 ml) a solution of $K_2C_8H_8$ (10 mmol) in THF (100 ml) was added at room temperature. The colour gradually changed from dark brown to bright yellow. Stirring was continued for about 30 min. Yellow $C_8H_8ScCl \cdot THF$ was obtained in almost quantitative yield by THF extraction. Recrystallization from hot chlorobenzene gave the pure compound (yield 50%). (Found: C, 56.12; H, 6.31; Cl, 13.36; Sc, 16.94. $C_{12}H_{16}ClOSc$ calcd.: C, 56.14; H, 6.30; Cl, 13.81; Sc, 17.51%.) The compound is air sensitive and insoluble in non-polar solvents.

$C_8H_8ScC_5H_5$

 $C_8H_8ScCl \cdot THF$ (2.56 g, 10 mmol) in THF (100 ml) was allowed to react with C_5H_5Na (10 mmol) in THF (100 ml) at room temperature. After 30 min stirring the solvent was pumped off and the residue washed with pentane. Analytically pure $C_8H_8ScC_5H_5$ was obtained either by crystallization from diethyl ether (yield 55%) or by sublimation at 120°C/0.1 mmHg (yield 36%). (Found: C, 72.46; H, 6.23; Sc, 20.94. $C_{13}H_{13}Sc$ calcd.: C, 72.88; H, 6.13; Sc, 20.99%.) The compound is yellowish white, rather air sensitive, and moderately soluble in common organic solvents.

$KSc(C_8H_8)_2$

 $C_8H_8ScCl \cdot THF$ (2.03 g, 8 mmol) in THF (100 ml) was allowed to react with $K_2C_8H_8$ (8 mmol) in THF (100 ml) at room temperature. After 1 hour's stirring $KSc(C_8H_8)_2$ was isolated in almost quantitative yield as a yellow-brown solid by THF extraction. (Found: K, 11.71; Sc, 13.12. $C_{16}H_{16}KSc$ calcd.: K, 13.37; Sc, 15.37%.) Purification was achieved by extraction with hot toluene, which, like other non-polar solvents (except THF), is a very poor solvent for $KSc(C_8H_8)_2$. (Found: Sc, 14.74%.) The compound is extremely air sensitive.

Spectra

Infrared spectra were recorded on a Hitachi EPI-G spectrophotometer using Nujol mulls between KBr windows. The IR spectra are shown in Fig. 1.

¹H NMR spectra were recorded on a Varian A-60 high resolution instrument with TMS as an internal standard. The spectrum of $C_8H_8ScC_5H_5$ in CS_2 , showed two singlets at δ 6.37 and δ 5.13 ppm with relative intensities of 8 to 5. The spectrum of KSc(C_8H_8)₂, in THF- d_8 , showed one singlet at δ 5.73 ppm.

The mass spectrum of $C_8H_8ScC_5H_5$ was recorded on an AEI-MS9 instrument by Mr. A. Kiewiet, and the peaks are listed in Table 1. A reliable mass spectrum of KSc(C_8H_8)₂ could not be obtained because of its extreme air sensitivity.

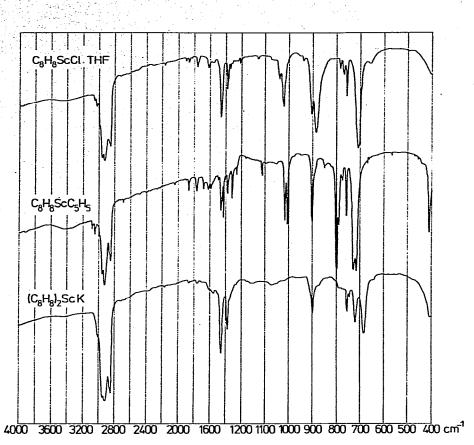


Fig. 1. IR spectra of C₈H₈ScCl · THF, C₈H₈ScC₅H₅ and KSc(C₈H₈)₂ in Nujol.

:

TABLE 1

MASS SPECTRUM OF C8H8ScC5H5

m/e	Relative abundance	Ion	Metastable peaks
214	100	C ₁₃ H ₁₃ Sc ⁺	· · · · · · · · · · · · · · · · · · ·
188	17	C11H11Se ⁺	$m^{\star} = 165 - C_2 H_2$
149	28	C8H8Se ⁺	$m^* = 165 -C_2H_2$ $C_{13}H_{13}Sc^* \cdots C_{11}H_{11}Sc^*$
147	34	C ₈ H ₆ Se ⁺	
110	95	C ₅ H ₅ Se ⁺	$m^{\star} = 64.5$
		5 5	-C ₆ H ₆
104	10	C ₈ H ₈ +	$C_{11}H_{11}Se^+ \xrightarrow{-C_6H_6} C_5H_5Se^+$
94	13	C11H11Sc2+	
84	20	C ₃ H ₃ Se ⁺	
83	13	C ₃ H ₂ Se ⁺	
78	20	C ₆ H ₆ +	
70	18	C ₂ HSc ⁺	
66	12	$C_5H_6^+$	
45	20	Sc ⁺	
39	14	C ₃ H ₃ +	

321

Discussion

The IR and ¹H NMR spectra indicate that $C_8H_8ScC_5H_5$ is a sandwich-type complex, in which the planar five- and eight-membered rings are π -bonded to the metal. The characteristic absorptions of π -C₅H₅ in the IR spectrum [5] are found at 3040, 1018 and 800 cm⁻¹, while the absorptions at 900, 790, 729, 714 cm⁻¹ can be ascribed to π -C₈H₈. The spectrum is almost identical with that of the titanium analogue [6], the sandwich structure of which has been proven by X-ray analysis [7]. The mass spectra of C₈H₈ScC₅H₅ and C₈H₈TiC₅H₅ also are closely similar. The mass spectra of analogous compounds of yttrium and a number of lanthanides show C₅H₅Ln⁺ and C₈H₈Ln⁺ in almost equal abundances [8] in contrast with the mass spectra of C₈H₈ScC₅H₅ and C₈H₈TiC₅H₅ [6], where the C₅H₅M⁺ ion is much more abundant than C₈H₈M⁺. This difference is in keeping with the larger size of Y and Ln, which is expected to favour the bonding to the larger ring system.

The IR and ¹H NMR spectra of $KSc(C_8H_8)_2$ strongly suggest that it contains the sandwich anion $[Sc(C_8H_8)_2]^-$, by analogy with similar compounds of yttrium and a number of lanthanides [9].

Preparation of other organoscandium compounds and the nature of metal—carbon bonding in such compounds will be the subject of further research.

Acknowledgement

The authors are much indebted to Prof. F. Jellinek for helpful discussions. Thanks are also due to Mr. J. Hommes for his accurate scandium analyses.

References

- 1 G. Wilkinson and J.M. Birmingham, J. Amer. Chem. Soc., 87 (1956) 42.
- 2 F.A. Hart, A.G. Massey and Mohan Singh Saran, J. Organometal. Chem., 21 (1970) 147.
- 3 R.S.P. Coutts and P.S. Wailes, J. Organometal. Chem., 25 (1970) 117.
- 4 H. Yamada, T. Maeda and I. Kojima, Anal. Chim. Acta, 72 (1974) 426.
- 5 H.P. Fritz and H. Keller, Chem. Ber., 95 (1962) 158.
- 6 H.O. van Oven and H.J. de Liefde Meijer, J. Organometal. Chem., 19 (1969) 373.
- 7 P.A. Kroon and R.B. Helmholdt, J. Organometal. Chem., 25 (1970) 451.
- 8 J.D. Jamerson, A.P. Masino and J. Takats, J. Organometal. Chem., 65 (1974) C33.
- 9 K.O. Hodgzon, F. Mares, D.F. Starke and A. Streitweiser, J. Amer. Chem. Soc., 95 (1973) 8650.